Multiple Choice: Calculators Permitted

19. If the point $(-2,5)$ lies on the graph of $y=f(x)$, what point must be on the graph of $\mathrm{f}^{-1}(\mathrm{x}-1)$?
A. $(6,2)$
B. $(6,-2)$
C. $(5,-1)$
D. $(5,-3)$
20. The point $(-3,6)$ is on the graph of $y=f(x)$. What point must be on the graph of $y=2 f(-3 x)$?
A. $(1,3)$
B. $(1,12)$
C. $(9,3)$
D. $(9,12)$
21.

The graph of $y=f(x)$ is shown on the left. Determine an equation of the function graphed on the right.

A. $y=\frac{1}{2} f(x-1)-5$
B. $y=\frac{1}{2} f(x-1)-4$
C. $y=2 f(x-1)-5$
D. $y=2 f(x-1)-4$
22. Solve: $\log x=2 \cos x, 0<x<2 \pi$
A. $0.17,0.71$
B. 1.38
C. $1.48,5.07$
D. $1.57,5.11$
23.

The height above the ground, h metres, of a person on a Ferris wheel at time t seconds. is given by the formula $h(t)=-20 \cos \frac{2 \pi}{40} t+23$, where $t \geq 0$. Determine the earliest time at which the person will be 15 m above the ground.
A. 7.38 s
B. $\quad 12.62 \mathrm{~s}$
C. 32.62 s
D. 37.14 s
24.

A circle has a radius of 18 cm . If the length of arc AB is $21 \pi \mathrm{~cm}$, as shown in the diagram. determine the measure of the central angle θ in degrees.

A. 120°
B. 150°
C. 210°
D. 240°
25.

Determine the restriction(s) for the expression $\frac{\sec x}{2 \sin x+1}$.
A. $\quad \sin x \neq-\frac{1}{2}$
B. $\quad \sin x \neq 0, \quad \sin x \neq-\frac{1}{2}$
C. $\quad \cos x \neq 0, \quad \sin x \neq-\frac{1}{2}$
D. $\quad \cos x \neq 0, \quad \sin x \neq 0, \quad \sin x \neq-\frac{1}{2}$
26. Which statement is true for $P(x)=3 x^{3}+4 x^{2}+2 x-9$?
A. When $P(x)$ is divided by $x+1$, the remainder is 6 .
B. $x-1$ is a factor of $P(x)$.
C. $P(3)=36$
D. $P(x)=(x+3)\left(3 x^{2}-5 x+17\right)+42$
27. Which of the following functions is the correct inverse for the function $f(x)=\sqrt{x-2},\{x$ $\mid x$ 回 $0, x$ 目 $\}$?
A $f^{-1}(x)=\sqrt{x+2}$
C $f^{-1}(x)=x^{2}+2$
B $f^{-1}(x)=\sqrt{x}+2$
D $f^{-1}(x)=(x-2)^{2}$
28. The $20^{\text {th }}$ term of a geometric sequence is 524288 and the $14^{\text {th }}$ term is 8192 . The value of the third term could be:
A. 4 only
B. 8 only
C. +4 and -4
D. +8 and -8
29. A population grows continuously according to the formula $P=P_{0} e^{k t} \quad$, where P is the final population at the end of t years. P_{0} is the initial population, and k is the annual growth rate. If the initial population is 5000 and the population grew to 6750 in 10 years, determine the value of k.
A. 3%
B. 0.3%
C. 13%
D. 30%
30. The pH scale measures the acidity (0-7) or alkalinity (7-14) of a solution. It is a logarithmic scale in base 10 . Thus, a pH of 5 is 10 times more acidic than a pH of 6 . If solution A has a pH of 3.5 , how many times more acidic is it than solution B which has a pH of 5 ?
A. 1.49
B. 1.50
C. 30.90
D. 31.62

